MYBL1 rearrangements and MYB amplification in breast Adenoid cystic carcinoma (AdCC) lacking MYB-NFIB fusion gene

Jisun Kim, Felipe C. Geyer, Luciano G Martelotto, Charlotte K Y Ng, Raymond S Lim, Pier Selenica, Fresia Pareja, Nicola Fusco, Odette Mariani, Sunil Badve, Anne Vincent-Salomon, Larry Norton, Jorge S Reis-Filho & Britta Weigelt

Department of Surgery, Ulsan university College of Medicine, Asan Medical Center, Seoul, Korea
Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
Adenoid cystic carcinoma (AdCC) of breast

- Composed of dual population of luminal myoepithelial/basal cells
- Commonly arise in salivary gland, lung, lacrimal gland and breast etc.
- Rare type of breast malignancies accounts for up to 1%
- Invariably displaying a triple negative phenotype
- Differ from conventional TNBCs
 - exhibiting indolent tumor biology and clinical course
 - lacking recurrent TP53 and PIK3CA mutations, harboring low levels of genetic instability and mutational burden

Kim et al. unpublished
MYB rearrangement, known driver of Adenoid cystic carcinoma

- Molecular hallmark t(6;9)(q22-23;p23-24) translocation creating a MYB-NFIB fusion gene, well known oncogenic driver of AdCCs
- MYB rearrangement
 - Found in ~50% of salivary gland and in 38-100% of breast AdCCs
- MYB gene
- Encodes c-MYB transcription factor, regulating expression of multiple target genes

Marchio et al. J Clin Pathol 2010
Persson et al. PNAS 2009
Oncogenic mechanism of *MYB-NFIB* fusion gene

- *MYB* family (*MYB, MYBL1, MYBL2*)
- Encodes c-MYB transcription factor, regulating expression of multiple target genes
- **Overexpression of *MYB* gene**
 - Loss of negative regulatory domain by fusion event
 - Relocation of super-enhancers originally located in *NFIB* closer to *MYB* promoter
- Recently, alternative genetic mechanisms, such as *MYBL1* rearrangements, have been reported in *MYB-NFIB*-negative salivary gland AdCCs

Aim

• To identify alternative oncogenic drivers of this rare special type of TNBC
eg. MYBL1 rearrangement recently reported in salivary gland AdCC

• Illustrate a comprehensive genomic and transcriptomic repertoire of *MYB-NFIB*
negative breast AdCCs
Methods

- Four cases of AdCCs confirmed negative of MYB-NFIB fusion gene by FISH
 - RNA-sequencing was performed to identify MYB rearrangement (N=3)
 - Whole genome sequencing (WGS) for other rearrangement (N=2)
 - Massively parallel sequencing (MSK-IMPACT) d/t tissue availability (N=1)
- Break-apart FISH for MYB/MYBL1 gene to confirm rearrangements
- Quantitative RT-PCR and RNA-sequencing for gene expression
- Expression of downstream pathways evaluated using gene set enrichment analyses (GSEA)

<table>
<thead>
<tr>
<th></th>
<th>AdCC1</th>
<th>AdCC2</th>
<th>AdCC3</th>
<th>AdCC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>WGS</td>
<td>WGS</td>
<td>IMPACT</td>
<td>-</td>
</tr>
<tr>
<td>RNA</td>
<td>RNA-sequencing</td>
<td>RNA-sequencing</td>
<td>-</td>
<td>RNA-sequencing</td>
</tr>
</tbody>
</table>
Case 1; MYBL1 rearrangement (1)

- *MYB-NFIB* fusion gene negative by FISH, c-MYB positive by IHC
- *MYBL1-NFIB* fusion gene identified by RNA-sequencing
- *MYBL1* break-apart FISH confirmed rearrangement

Negative regulatory domain (NRD) preserved
Case 2; **MYBL1** rearrangement (2)

- *MYB-NFIB* fusion gene negative by FISH
- *MYBL1-NFIB* fusion gene identified by RNA-sequencing and whole genome sequencing
- *MYBL1* break-apart FISH confirmed rearrangement

Loss of negative regulatory domain (NRD)
Case 3; *MYB* amplification

- *MYB* amplification (*n=1*) found by targeted massively parallel sequencing (*MSK-IMPACT, *)
- Amplification of 6q23.3 encompassing *MYB* gene
- Overexpression of c-MYB by MYB-FISH and Immunohistochemistry

*MSK-IMPACT
Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets
Deep sequencing of all exons and selected introns of 410 cancer genes
Gene expression by RNA-sequencing and qRT-PCR

- **MYB/MYBL1** gene expression (Both 5’ and 3’ segment of each gene)
 - Highly expressed MYBL1, in cases with MYBL1 rearrangement
 - Highly expressed MYB, in cases with MYB rearrangement or MYB amplification
 - Only the 5’ part of the gene, segment after fusion junction not overexpressed
Downstream effect of MYBL1 rearrangement or MYBL2 intronic mutation

- Pathway analysis using ssGSEA (single sample gene set enrichment analysis)

- Compared to the reference case, MYB-NFIB positive AdCC, cases with MYBL1 rearrangement, MYBL2 intronic mutation displayed resemblance of downstream pathway activation
Conclusion

• Our data support the contention that *MYB/MYBL1* activation likely constitutes the common mechanism driving breast AdCCs, to which various underlying genomic alterations may converge.

• Further investigations of larger cohorts of AdCCs lacking the *MYB-NFIB* and *MYBL1* fusion genes are warranted to elucidate drivers other than *MYBL1* rearrangements and *MYB* amplification.
Acknowledgements

• Jorge S Reis-Filho
• Britta Weigelt
• Felipe C Geyer
• Ashwini Rhagavendra
• Kathleen A Burke
• Raymond Lim
• Pier Selenica
• Anqi Li
• Fresia Pareja
• Rodrigo Gularte-Merida
• Ashwini Raghavendra
• Rui Bi
• Thais de Oliveira
• Charlotte K Ng
• Luciano Martelotto
• Pedro Blecua
• Simon Powell
Thank you very much