Hi-Plex for High-Throughput Mutation Screening of BRCA1, BRCA2, TP53, and PALB2 in Breast and Ovarian Cancer Patients

Sean Wen, Lai Kah Nyin, Daniel J. Park, Tu Nguyen-Dumont, Fleur Hammet, Melissa Southey, Woo Yin Ling, Yip Cheng Har, Nur Aishah Mohd Taib, Teo Soo Hwang

Cancer Research Malaysia
Worldwide distribution of female cancers

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Breast</th>
<th>Ovary</th>
<th>Cervix</th>
<th>Endometrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>1,671,149</td>
<td>238,719</td>
<td>527,624</td>
<td>319,605</td>
</tr>
<tr>
<td>Mortality</td>
<td>521,907</td>
<td>151,917</td>
<td>265,672</td>
<td>76,160</td>
</tr>
<tr>
<td>M:I</td>
<td>31%</td>
<td>64%</td>
<td>50%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Source: GLOBOCAN 2012
Breast and ovarian predisposition genes

Breast cancer
Unexplained: 50%

Ovarian cancer
Unexplained: 60%

Familial relative risk

<table>
<thead>
<tr>
<th>Genes</th>
<th>Breast cancer</th>
<th>Ovarian cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk estimates</td>
<td>Prevalence ¹</td>
</tr>
<tr>
<td>BRCA1</td>
<td>44-75%</td>
<td>1-3%</td>
</tr>
<tr>
<td>BRCA2</td>
<td>41-70%</td>
<td>1-3%</td>
</tr>
<tr>
<td>TP53</td>
<td>> 90%</td>
<td>< 1%</td>
</tr>
<tr>
<td>PALB2</td>
<td>26-46%</td>
<td>< 1%</td>
</tr>
</tbody>
</table>

¹ Prevalence in unselected population-based studies
Gaps in access to genetic testing in Asia

Challenge
• Severe under-testing in Asia
• <1% of newly diagnosed breast cancer patients receive genetic testing
• Main reason: Cost

Nakamura, Public Health Genomics, 2016

Our approach
To develop a high-throughput and cost-efficient genetic testing method to increase affordability and accessibility
Hi-Plex work flow

Step-wise annealing temperature of 55, 60, 65, 70 °C

259 amplicons to cover BRCA1, BRCA2, TP53, PALB2

Hioplex primer design tool

ASP (F)
ASP (R)

Target amplicon

ASP: Amplicon-specific primer
UP: Universal primer

* ~275bp

Nguyen-Dumont, Biotechniques, 2015
Bioinformatics workflow

- Sequencing platform: MiSeq
- Reads alignment: Bowtie2
- Variant calling: ROVER
 - Variant present on both read-pairs
 - Variant present in at least 2 read-pairs
 - Variant present at least 15% of all read-pairs
- Variant annotation: ANNOVAR
- Variant prioritisation
 - Exclude variants with MAF >1%
 - dbSNP138
 - 1000genome
 - ESP6500
 - Japanese cohort
 - Exclude variants on intronic sites
- Candidate variants

Langmead, Nat Methods, 2012
Wang, Nucleic Acid Res, 2010
Nagasaki, Nat Commun, 2015
Panel evaluation: Sensitivity assessment

<table>
<thead>
<tr>
<th>Genes</th>
<th>Region covered (bp)</th>
<th>Variants tested</th>
<th>Deletion</th>
<th>Insertion</th>
<th>SNV</th>
<th>Variants detected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-3bp</td>
<td>4-6bp</td>
<td>7-9bp</td>
<td>1-3bp</td>
</tr>
<tr>
<td>BRCA1</td>
<td>7,100</td>
<td>83</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>BRCA2</td>
<td>11,900</td>
<td>121</td>
<td>13</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>TP53</td>
<td>2,000</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PALB2</td>
<td>4,900</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>25,900</td>
<td>216</td>
<td>35</td>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

176 patients

- 215 of 216 variants successfully detected
- Sensitivity of 99.5%
Panel evaluation: Specificity assessment

- 3,209 variants detected by our panel
- Filtered away polymorphisms (n=2,717), intronic variants (n=265), variants on homopolymer region (n=1)
- 215 variants previously reported + 11 rare coding variants previously not reported

<table>
<thead>
<tr>
<th>No.</th>
<th>Gene</th>
<th>Genomic change</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
<th>Reconfirmed to be true?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BRCA1</td>
<td>chr17:g.41245675G>A</td>
<td>c.1873C>T</td>
<td>p.L625L</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>BRCA1</td>
<td>chr17:g.41245465C>T</td>
<td>c.2083G>A</td>
<td>p.D695N</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>BRCA1</td>
<td>chr17:g.41251820A>T</td>
<td>c.519T>A</td>
<td>p.P173P</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>BRCA2</td>
<td>chr13:g.32912750G>T</td>
<td>c.4258G>T</td>
<td>p.D1420Y</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>BRCA2</td>
<td>chr13:g.32913919C>T</td>
<td>c.5427C>T</td>
<td>p.C1809C</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>BRCA2</td>
<td>chr13:g.32968854C>T</td>
<td>c.9285C>T</td>
<td>p.D3095D</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>BRCA2</td>
<td>chr13:g.32953550G>A</td>
<td>c.8851G>A</td>
<td>p.A2951T</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>BRCA2</td>
<td>chr13:g.32914277A>G</td>
<td>c.5785A>G</td>
<td>p.I1929V</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>BRCA2</td>
<td>chr13:g.32972626A>T</td>
<td>c.9976A>T</td>
<td>p.K3326*</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>BRCA2</td>
<td>chr13:g.32913919C>T</td>
<td>c.5427C>T</td>
<td>p.C1809C</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>PALB2</td>
<td>chr16:g.23647121G>A</td>
<td>c.746C>T</td>
<td>p.P249L</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Panel application: Breast & ovarian cancer patients

<table>
<thead>
<tr>
<th>Genes</th>
<th>Breast cancer (N = 438)</th>
<th></th>
<th>Ovarian cancer (N = 286)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deleterious</td>
<td>VUS 3</td>
<td>Non-carriers</td>
</tr>
<tr>
<td>BRCA1</td>
<td>12 (2.7%)</td>
<td>4 (0.9%)</td>
<td>422 (96.3%)</td>
</tr>
<tr>
<td>BRCA2</td>
<td>16 (3.7%)</td>
<td>16 (3.7%)</td>
<td>406 (92.7%)</td>
</tr>
<tr>
<td>TP53</td>
<td>2 (0.5%)</td>
<td>1 (0.2%)</td>
<td>435 (99.3%)</td>
</tr>
<tr>
<td>PALB2</td>
<td>3 (0.7%)</td>
<td>3 (0.7%)</td>
<td>432 (98.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>33 (7.5%)</td>
<td>24 (5.5%)</td>
<td>381 (87.0%)</td>
</tr>
</tbody>
</table>

1 High risk, hospital-based cohort
2 Unselected, hospital-based cohort
3 Non-C0 missense and inframe indels
Conclusion

• We developed a high-throughput and cost-efficient genetic testing panel for four clinically relevant breast and ovarian cancer genes
 • Sensitivity of >99%
 • Specificity of >99%

• Application of panel on high risk breast patients
 • 7.5% of patients are carriers of these genes
 • BRCA1/2 carriers were more likely to have younger age at diagnosis, have family history of breast cancers, and have triple-negative breast cancers
 • 2 TP53 carriers identified have no known family history of Li-Fraumeni Syndrome cancers but were early-onset (<35yo)
 • 3 PALB2 carriers identified have family history of breast cancer

• Application of panel on unselected ovarian cancer patients (Hasmad, Gynecol Oncol, 2016)
 • 10.8% of patients are carriers of BRCA1 and BRCA2
 • Mutation carriers were more likely to be Indian, have serous ovarian cancer, and have more relatives with breast or ovarian cancer
 • 42% of mutation carriers did not have any family history of breast or ovarian cancer
 • Offering genetic counselling and genetic testing only to women with family history would mean that 35% of BRCA1 mutation carriers and 57% of BRCA2 mutation carriers would not be offered genetic testing
 • Emphasis on genetic screening on all unselected ovarian cancer patients
Acknowledgment

Core Team
Lai Kah Nyin
Joanna Lim
Teo Soo Hwang

Breast Cancer Team
Nadia Rajaram
Kwan Pui Yoke
Jaslyn Soo Sian Siu
Shivaani Mariapun
Siti Norhidayu Hasan
Patsy Ng Pei Sze

Familial Team
Lee Sheau Yee
Tiara Hassan
Daphne Lee
Caziena Krishnan
Yoon Sook Yee

Clinicians
Nur Aishah Mohd Taib
Yip Cheng Har
Woo Yin Ling

Collaborators
Daniel J Park
Tu Nguyen-Dumont
Fleur Hammet

and many, MANY more individuals...
Thank you 고맙습니다